新葡的京集团8814
通知与公告

【华东理工大学】Sensitivity analysis of the maximal value function with applications in nonconvex minimax programs

2024年04月22日 10:33  点击:[]

报告题目Sensitivity analysis of the maximal value function with applications in nonconvex minimax programs

报 告 人:郭磊 研究员 (华东理工大学)

报告时间:2024423日(星期 10:00-11:00

报告地点:数学楼115(大报告厅)

校内联系人刘永朝 教授         联系电话84708351-8141


报告摘要In this paper, we perform a sensitivity analysis for the maximal value function, which is the optimal value function for a parametric maximization problem. Our aim is to study various subdifferentials for the maximal value function. We obtain upper estimates of Fréchet, limiting, and horizon subdifferentials of the maximal value function by using some sensitivity analysis techniques sophisticatedly. The derived upper estimates depend only on the union of all solutions and not on its convex hull or only one solution from the solution set. Finally, we apply the derived results to develop some new necessary optimality conditions for nonconvex minimax problems. In the nonconvex-concave setting, our Wolfe duality approach compares favorably with the first-order approach in that the necessary condition is sharper and the constraint qualification is weaker.


报告人简介 郭磊,华东理工大学研究员。2013年获得新葡的京集团8814运筹学与控制论专业博士学位;2013-2015年在上海交通大学做师资博士后研究;2015-2019年任职于上海交通大学,任助理研究员、副研究员;2019年起入职华东理工大学,任特聘研究员。研究兴趣为双层规划与均衡模型的理论与方法及其在交通科学与供应链管理中的应用。截至目前共发表论文近30篇,其中在Mathematical Programming、Mathematics of Operations Research、SIAM系列期刊、Transportation Research Part B等国际权威期刊发表论文11篇。入选国家青年高层次人才计划;获得上海市哲学社会科学优秀成果奖等。主持国家自科基金面上与青年项目3项,省部级基金项目3项;作为骨干成员参与国家自科基金重点项目2项。






上一条:【中国科技大学】格点扩散系统的主特征值与行波解 下一条:【University of Leicester】Spectral analysis of the material-independent modes for the Helmholtz equation

关闭