新葡的京集团8814
通知与公告

【哈尔滨工业大学】Steady-state bifurcation and spike pattern in the Klausmeier-Gray-Scott model with non-diffusive plants

2024年08月13日 12:27  点击:[]

报告题目:Steady-state bifurcation and spike pattern in the Klausmeier-Gray-Scott model with non-diffusive plants

人:蒋卫华 教授哈尔滨工业大学

报告时间:2024年8月16 16:00-17:00

报告地点:数学114小报告厅

校内联系人:衣凤岐     联系电话84708351-8518


报告摘要: We studied the Klausmeier-Gray-Scott model with non-diffusive plants, which is a coupled ODE-PDE system. We first established the critical conditions for instability of the constant steady state in general coupled ODE-PDE activator-inhibitor systems. In addition, the local structure of the nonconstant steady state and the condition to determine the local bifurcation direction were obtained. Secondly, for the model with non-diffusive plants, the Turing bifurcation was subcritical and the nonconstant steady-state bifurcation solutions were unstable. Finally, we investigated the spatial pattern of the model with slowly diffusive plants to understand the formation of the spike pattern of the model with non-diffusive plants.


报告人简介:蒋卫华,哈尔滨工业大学长聘教授,博士生导师。黑龙江省工业与应用数学学会常务理事,美国数学会《Math.Review》评论员。 主要从事泛函微分方程和偏泛函微分方程的分支理论及应用的研究,在规范型的公式化以及从高余维分支研究角度揭示复杂模式的存在性和稳定性方面有一些特色工作。主持和参与多项国家自然科学基金及省部级基金项目,主要工作发表在国内外诸如科学通报,JDE, IMA J. Appl. Math.DCDS, SIADS, SAPM, JDDE,JMB,Physica D,DCDS BNonlinear Analysis,Nonlinear Anal. RWA J. Math. Anal. Appl. 等重要学术期刊上,出版专著一部。


上一条:【中国科学院数学与系统科学研究院】Projected gradient descent algorithm for ab initio crystal structure relaxation under a fixed unit cell volume 下一条:【哈尔滨工业大学】具有时间滞后的媒介影响的传染病模型的分支分析

关闭